Connexions module: m37090 1

PHP CONSTANTS'

SaSa Stamenkovié

This work is produced by The Connexions Project and licensed under the
Creative Commons Attribution License '

Abstract

In this paper the use of constants in php is described. Explanations in the text are followed by
examples wich makes a good foundation for further studying about constants. After learning about
theoretical concepts pointed out in this paper, one will be able to form and apply his knowledge about
constants in practical environments.

In physics "a constant represents a number which expreses quantity or relation that remains unchanged
under the specific set of conditions". In mathemathics, a constant is "quantity assumed to remain unchanged
within given disccusion". Obvious similarities of the definitions give the introduced term of constant the
meaning of something that lasts and remains unchanged in different sets of terms and environments. However,
regardless to these similarities in different scientific disciplines, the main subject of these paper are the
constants in php and their use in the grouping of certain parameters wich are internal for the script. The
process of defining the constants is supported by the unique mechanism that enables forming and usage of
the constants.

The mechanisam includes two determing arguments. The first one represents the name of the constant.
Naming the constant makes it a special entity. The entity must be clearly structured and characterized by
the value given to the name of the constant. The two arguments condition one another.

Finally, a constant represents a name to which is given a scalar value (see table 1). To define a constant
we must determine the perameters in the function "define()".

type of data value

String Alfanumerical value; it may contain any ASCII
character number

Integer numerical value; it may be positive, negative or a
whole number

Double (or float) floating point value, it may be decimal number
Boolean logical value that can be either true (1) or false (0)
Table 1

Example 1 interprets the scalar values within the above mentioned function:
Example 1

*Version 1.1: Feb 18, 2011 8:53 pm US/Central
Thttp://creativecommons.org/licenses/ by /3.0/

http://cnx.org/content/m37090/1.1/

Connexions module: m37090 2

<7php

define ("CONSTANT_NAME", the_value_of_the_constat);
define ("CONSTANT_NAME2", 10);

define ("CONSTANT_NAME3", 10.4);

define ("CONSTANT_NAME4", true);

In this way the constant is determined. It is possible to echo out the value in the way described in the
following part of the paper:

echo CONSTANT_NAME. ’</br>?;
echo CONSTANT_NAME2. ’</br>?;
echo CONSTANT_NAME3. ’</br>’;
echo CONSTANT_NAME4;

7>

The result of executing the script is: the value of the constant.

The purpose of the example 1 is to present the way of forming constants and, also, to point to the possible
types of data which can be used in that case. Example 2, described in the following part of the papaer is
much more concrete form of the use of the constants.

<7php

define (°PI’, 3.14159265);
echo PI;

>

Therefore, the result is (3.14159265).
One should be careful about the way of defining the constants which must include a semicolon, This is
the right way of doing it, and leaving out a semicolon is not.

define (PI, 3.14159265);

In defining the constants the usage of capitals is recommendable because it enables making clear difference
between the constans and the variables. This can be very useful. Applying this principle will make the
constant easier to spot and that will facilitate the job of a programmer.

Finally, there is a limitation that should be pointed to. When naming a constant, a programmer
does not have the complete freedom of using certain words such as "Built-In-Keywords". Therefore, if
we, for instance, use a keyword "PUBLIC" it is quite certain that we will get the message of syntax
error. The same goes for every other reserved word. A complete list of such words can be found at:
http://php.net/manual /en /reserved.keywords.php.

In the following part of the paper an exaple will be presented made to generate the constant of the
moment of the creation of this particular learning object so that, after executing the script, the date of the
creation will be gotten with the aditional generating of the results about the version of php server and the
sorts of the operating system that has been used for executing the script.

<!'DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtmli-transitional.dtd" >
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"
/>
<title>Konstante</title>
</head>
<body>

http://cnx.org/content/m37090/1.1/

Connexions module: m37090 3

<7php
define (’MOMENT’, °’february, 19, 2011°);
echo ’><p>The script has been created on: ’ . MOMENT . ’.

PHP server version:

’. PHP_VERSION . ’ that running on ’ . PHP_0S . ’ operating system.</p>’;
7>

</body>

</html>

In table 2 important structual elements of the presented examples are defined.

Table 2
Prototype Construct /function Purpose
echo() Language construct shows one or more strings
define() function defines named constant
PHP_VERSION function Returns a string containing the
version of the currently running
PHP parser or extension
Table 2
Literature:

[1] - PHP Cookbook, David Sklar, Adam Trachtenberg, 2nd Edition, O’Reilly, 2006.
[2] - Ajax, JavaScript and PHP All in One, Phil Ballard Michael Moncur, Sams Publishing, 2009.
[3] - PHP 6 and MYSQL 5 for dynamic Web sites, Larry Ullman, Peachpit Press, 2008.

[4] - http://www.php.net

http://cnx.org/content/m37090/1.1/

